Abstract
Cryptographic cloud storage (CCS) is a secure architecture built in the upper layer of a public cloud infrastructure. In the CCS system, a user can define and manage the access control of the data by himself without the help of cloud storage service provider. The ciphertext-policy attribute-based encryption (CP-ABE) is considered as the critical technology to implement such access control. However, there still exists a large security obstacle to the implementation of CP-ABE in CCS. That is, how to identify the malicious cloud user who illegally shares his private keys with others or applies his keys to construct a decryption device/black-box, and provides the decryption service. Although several CP-ABE schemes with black-box traceability have been proposed to address the problem, most of them are not practical in CCS systems, due to the absence of scalability and expensive computation cost, especially the cost of tracing. Thus, we present a new black-box traceable CP-ABE scheme that is scalable and high efficient. To achieve a much better performance, our work is designed on the prime order bilinear groups that results in a great improvement in the efficiency of group operations, and the cost of tracing is reduced greatly to O ( N ) or O ( 1 ) , where N is the number of users of a system. Furthermore, our scheme is proved secure in a selective standard model. To the best of our knowledge, this work is the first such practical and provably secure CP-ABE scheme for CCS, which is black-box traceable.
Funder
National Natural Science Foundation of China
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference43 articles.
1. Cryptographic cloud storage;Kamara;Lect. Notes Comput. Sci.,2010
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献