Nekhoroshev Stability for the Dirichlet Toda Lattice

Author:

Henrici Andreas

Abstract

In this work, we prove a Nekhoroshev-type stability theorem for the Toda lattice with Dirichlet boundary conditions, i.e., with fixed ends. The Toda lattice is a member of the family of Fermi-Pasta-Ulam (FPU) chains, and in view of the unexpected recurrence phenomena numerically observed in these chains, it has been a long-standing research aim to apply the theory of perturbed integrable systems to these chains, in particular to the Toda lattice which has been shown to be a completely integrable system. The Dirichlet Toda lattice can be treated mathematically by using symmetries of the periodic Toda lattice. Precisely, by treating the phase space of the former system as an invariant subset of the latter one, namely as the fixed point set of an important symmetry of the periodic lattice, the results already obtained for the periodic lattice can be used to obtain analogous results for the Dirichlet lattice. In this way, we transfer our stability results for the periodic lattice to the Dirichlet lattice. The Nekhoroshev theorem is a perturbation theory result which does not have the probabilistic character of related theorems, and the lattice with fixed ends is more important for applications than the periodic one.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3