Full-Length Transcriptomics Reveal the Gene Expression Profiles of Reef-Building Coral Pocillopora damicornis and Symbiont Zooxanthellae

Author:

Guo Zhuojun,Liao XinORCID,Han Tingyu,Chen Junyuan,He ChunpengORCID,Lu Zuhong

Abstract

Since the last century, episodes of coral reef bleaching and mortality have occurred almost annually in tropical or subtropical seas. When the temperature exceeds the tolerant limit of a coral–zooxanthellae holobiont, it induces physiological stress and disrupts the vulnerable fine-tuned balance between the two partners, leading to bleaching. The gene expression profiles of a scleractinian coral and its symbiotic zooxanthellae can offer important information with which to decipher this balanced relationship at the functional level of genes. Here, we sequence a full-length transcriptome of a well-known, common and frequently dominant reef-building coral, Pocillopora damicornis, to acquire gene expression information for the coral–zooxanthellae holobiont. To this end, we identify 21,926 and 465 unique genes in the coral and algal symbiont, respectively, and examine the functional enrichment among these genes based on GO (gene ontology) terms and KEGG (the Kyoto Encyclopedia of Genes and Genomes) pathways. The results show that the zooxanthellae provide for their coral host through energy and nutrition metabolism by photosynthesis, and that both the coral host and zooxanthellae have an anti-stress molecular mechanism, though the two parties have independent abilities to survive in the short term. This work sheds light on the valuable gene expression profile of a coral–zooxanthellae holobiont and provides grounds for further molecular biological research to support ecological protection work.

Funder

open research fund of State Key Laboratory of Bioelectronics, Southeast University

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modelling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3