Influence of Rice Husk Biochar and Lime in Reducing Phosphorus Application Rate in Acid Soil: A Field Trial with Maize

Author:

Mosharrof Mehnaz,Uddin Md. KamalORCID,Mia ShamimORCID,Sulaiman Muhammad FirdausORCID,Shamsuzzaman Shordar M.,Haque Ahmad Numery AshfaqulORCID

Abstract

Biochar has been suggested for application in acidic soils for increasing agricultural productivity, as it may result in the benefits of sustainable carbon offset into soils and of increasing soil fertility improvement. However, the role of biochar in enhancing nutrient bioavailability and plant performance is manifested through the complex interactions of biochar-soil-plant. Moreover, it is not yet known how a crop-residue-derived biochar would perform in acidic soil when applied with a reduced rate of lime and phosphorus. Here, we examined the performance of maize with different combinations of biochar, lime, and phosphorus (P) application rates under field conditions. Specifically, rice husk biochar (10 t ha−1) was applied with 75% of the required lime and three rates of phosphorus fertilizer (100%, 75%, and 50%). The results showed that incorporation of biochar and lime, irrespective of the rates of P application, significantly increased soil nutrient (nitrogen and P) availability, while aluminum (Al) and iron (Fe) concentrations in soil were reduced. Furthermore, when biochar was combined with a lower amount of lime (75% of the recommended amount) and half of the required P, maize production increased by 62.38% compared to the control. Similarly, nutrient uptake in plants increased significantly in the same treatment (e.g., P uptake increased by 231.88%). However, soil respiration (CO2 emission) increased with lime only and the combined application of lime with biochar compared to the control; these treatments resulted in a higher carbon loss, as CO2 from the soil (84.94% and 67.50% from only lime treatment (T2), and rice husk biochar (RHB) and lime with 50% triple superphosphate (TSP) (T5), respectively). Overall, our findings imply that biochar application may sustain productivity in acid soils even when lime and P fertilizer applications are made at a reduced rate.

Funder

Universiti Putra Malaysia

National Agricultural Technology Program (NATP): Phase- II Project, Bangladesh Agricultural Research Council

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3