Author:
Liu Baoyu,Liang Huiling,Wu Chao,Huang Xiyang,Wen Xiangying,Wang Manlian,Tang Hui
Abstract
Illicium difengpi Kib and Kim, an endangered plant unique to karst areas in China, has evolved an extremely high tolerance to arid environments. To elucidate the molecular mechanisms of the response to drought stress in I. difengpi, physiological index determination and transcriptome sequencing experiments were conducted in biennial seedlings grown under different soil moisture conditions (70~80%, 40~50% and 10~20%). With increasing drought stress, the leaf chlorophyll content decreased, while the proline (Pro), soluble sugar (SS) and malondialdehyde (MDA) contents increased; superoxide dismutase (SOD) and peroxidase (POD) activities also increased. Transcriptome sequencing and pairwise comparisons of the treatments revealed 2489, 4451 and 753 differentially expressed genes (DEGs) in CK70~80 vs. XP40~50, CK70~80 vs. XP10~20 and XP40~50 vs. XP10~20, respectively. These DEGs were divided into seven clusters according to their expression trends, and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment results of different clusters indicated that genes in the hormone signal transduction and osmotic regulation pathways were greatly activated under mild drought stress. When drought stress increased, the DEGs related to membrane system and protein modification and folding were all upregulated; simultaneously, chitin catabolism- and glycolysis/gluconeogenesis-related genes were continuously upregulated throughout drought stress, while the genes involved in photosynthesis were downregulated. Here, 244 transcription factors derived from 10 families were also identified. These results lay a foundation for further research on the adaptation of I. difengpi to arid environments in karst areas and the establishment of a core regulatory relationship in its drought resistance mechanism.
Funder
National Natural Science Foundation of China
the Project for Key Research & Development in Guangxi
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献