Foam Concrete Produced with Recycled Concrete Powder and Phase Change Materials

Author:

Gencel Osman,Nodehi MehrabORCID,Hekimoğlu GökhanORCID,Ustaoğlu Abid,Sarı Ahmet,Kaplan Gökhan,Bayraktar Oguzhan YavuzORCID,Sutcu Mucahit,Ozbakkaloglu TogayORCID

Abstract

In construction industry, phase change materials (PCMs), have recently been studied and found effective in increasing energy efficiency of buildings through their high capacity to store thermal energy. In this study, a combination of Capric (CA)-Palmitic acid (PA) with optimum mass ratio of 85–15% is used and impregnated with recycled concrete powder (RCP). The resulting composite is produced as foam concrete and tested for a series of physico-mechanical, thermal and microstructural properties. The results show that recycled concrete powder can host PCMs without leaking if used in proper quantity. Further, the differential scanning calorimetry (DSC) results show that the produced RCP/CA-PA composites have a latent heat capacity of 34.1 and 33.5 J/g in liquid and solid phases, respectively, which is found to remain stable even after 300 phase changing cycles. In this regard, the indoor temperature performance of the rooms supplied with composite foams made with PCMs, showed significantly enhanced efficiency. In addition, it is shown that inclusion of PCMs in foam concrete can significantly reduce porosity and pore connectivity, resulting in enhanced mechanical properties. The results are found promising and point to the suitability of using RCP-impregnated PCMs in foam composites to enhance thermo-regulative performance of buildings. On this basis, the use of PCMs for enhanced thermal properties of buildings are recommended, especially to be used in conjunction with foam concrete.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Alkali-activated materials made of construction and demolition waste as precursors: A review;Sustainable Materials and Technologies;2024-04

2. Performance evaluation of cement-based composites containing phase change materials from energy management and construction standpoints;Construction and Building Materials;2024-02

3. Thermal Properties of Foam Mortars used Bentonite as Supplementary Cementitious Material;Ordu Üniversitesi Bilim ve Teknoloji Dergisi;2023-12-31

4. Optimal concentration of post-alcohol bard and microsilica in cement-sand mixtures determination;Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik Shikisattardy Keshendi Paidalanu;2023-12-07

5. Microstructure and mechanical properties of phase change cloud concrete stone cementitious composites;Construction and Building Materials;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3