Effects of Winter Flounder Antifreeze Protein on the Growth of Ice Particles in an Ice Slurry Flow in Mini-Channels

Author:

Takeshita Yuki,Waku Tomonori,Wilson Peter W.,Hagiwara Yoshimichi

Abstract

The control of ice growth in ice slurry is important for many fields, including (a) the cooling of the brain during cardiac arrest, (b) the storage and transportation of fresh fish and fruits, and (c) the development of distributed air-conditioning systems. One of the promising methods for the control is to use a substance such as antifreeze protein. We have observed and report here growth states of ice particles in both quiescent and flowing aqueous solutions of winter flounder antifreeze proteins in mini-channels with a microscope. We also measured ice growth rates. Our aim was to improve the levels of ice growth inhibition by subjecting the antifreeze protein solution both to preheating and to concentrating by ultrafiltration. We have found that the ice growth inhibition by the antifreeze protein decreased in flowing solutions compared with that in quiescent solutions. In addition, unlike unidirectional freezing experiments, the preheating of the antifreeze protein solution reduced the ice growth inhibition properties. This is because the direction of flow, containing HPLC6 and its aggregates, to the ice particle surfaces can change as the ice particle grows, and thus the probability of interaction between HPLC6 and ice surfaces does not increase. In contrast to this, ultrafiltration after preheating the solution improved the ice growth inhibition. This may be due to the interaction between ice surfaces and many aggregates in the concentrates.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3