The Effect of Cytochalasans on the Actin Cytoskeleton of Eukaryotic Cells and Preliminary Structure–Activity Relationships

Author:

Kretz Robin,Wendt Lucile,Wongkanoun Sarunyou,Luangsa-ard J.,Surup Frank,Helaly Soleiman,Noumeur Sara,Stadler MarcORCID,Stradal Theresia

Abstract

In our ongoing search for new bioactive fungal metabolites, two new cytochalasans were isolated from stromata of the hypoxylaceous ascomycete Hypoxylon fragiforme. Their structures were elucidated via high-resolution mass spectrometry (HR-MS) and nuclear magnetic resonance (NMR) spectroscopy. Together with 23 additional cytochalasans isolated from ascomata and mycelial cultures of different Ascomycota, they were tested on their ability to disrupt the actin cytoskeleton of mammal cells in a preliminary structure–activity relationship study. Out of all structural features, the presence of hydroxyl group at the C7 and C18 residues, as well as their stereochemistry, were determined as important factors affecting the potential to disrupt the actin cytoskeleton. Moreover, reversibility of the actin disrupting effects was tested, revealing no direct correlations between potency and reversibility in the tested compound group. Since the diverse bioactivity of cytochalasans is interesting for various applications in eukaryotes, the exact effect on eukaryotic cells will need to be determined, e.g., by follow-up studies involving medicinal chemistry and by inclusion of additional natural cytochalasans. The results are also discussed in relation to previous studies in the literature, including a recent report on the anti-Biofilm activities of essentially the same panel of compounds against the pathogenic bacterium, Staphylococcus aureus.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Reference32 articles.

1. The biosynthesis of cytochalasans

2. Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the ascomycete order Xylariales

3. The cytochalasins, a new class of biologically active mould metabolites;Aldrigde;J. Chem. Soc. Chem. Commun.,1967

4. Cytochalasins block actin filament elongation by binding to high affinity sites associated with F-actin;Flanagan;J. Biol. Chem.,1980

5. Mechanism of action of cytochalasin: evidence that it binds to actin filament ends.

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3