Dielectric Spectroscopy Using Dual Reflection Analysis of TDR Signals

Author:

Ngui Yin,Lin Chih-PingORCID,Wu Tsai-Jung

Abstract

Time-domain reflectometry (TDR) has been a powerful tool for measuring soil dielectric properties. Initiating from apparent dielectric constant ( K a ) measurement up until apparent and complex dielectric spectroscopies, the embedded information in the TDR signal can be extracted to inspire our understanding of the underlying dielectric behaviors. Multiple full waveform inversion techniques have been developed to extract complex dielectric permittivity (CDP) spectrum, but most of them involved prior knowledge of input function and tedious calibration. This rendered the field dielectric spectroscopy challenging and expensive to conduct. Dual reflection analysis (DRA) is proposed in this study to measure CDP spectrum from 10 MHz to 1 GHz. DRA is a simple, robust, model-free, and source-function free algorithm which requires minimal calibration effort. The theoretical framework of DRA is established and the necessary signal processing procedures are elaborated in this study. Eight materials with different dielectric characteristics are selected to evaluate DRA’s performance, by using both simulated and experimental signals. DRA is capable of measuring non-dispersive materials very well, whereas dispersive materials require the assistance of a long-time-window (LTW) extraction method to further extend the effective bandwidth. The DRA approach is suitable for field applications that can only record a limited amount of data points and in-situ dielectric spectroscopy.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3