A Deep Learning Approach Based on Novel Multi-Feature Fusion for Power Load Prediction

Author:

Xiao Ling1,An Ruofan2,Zhang Xue3

Affiliation:

1. School of Mathematics and Statistics, Xuzhou University of Technology, Xuzhou 221018, China

2. Faculty of Science and Technology, University of Macau, Taipa, Macau 999078, China

3. School of Economics and Management, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Abstract

Adequate power load data are the basis for establishing an efficient and accurate forecasting model, which plays a crucial role in ensuring the reliable operation and effective management of a power system. However, the large-scale integration of renewable energy into the power grid has led to instabilities in power systems, and the load characteristics tend to be complex and diversified. Aiming at this problem, this paper proposes a short-term power load transfer forecasting method. To fully exploit the complex features present in the data, an online feature-extraction-based deep learning model is developed. This approach aims to extract the frequency-division features of the original power load on different time scales while reducing the feature redundancy. To solve the prediction challenges caused by insufficient historical power load data, the source domain model parameters are transferred to the target domain model utilizing Kendall’s correlation coefficient and the Bayesian optimization algorithm. To verify the prediction performance of the model, experiments are conducted on multiple datasets with different features. The simulation results show that the proposed model is robust and effective in load forecasting with limited data. Furthermore, if real-time data of new energy power systems can be acquired and utilized to update and correct the model in future research, this will help to adapt and integrate new energy sources and optimize energy management.

Funder

National Natural Science Foundation of China

Science and Technology Innovation Project of The Chongqing Municipal Education Committee

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3