Adhesion Behavior of Underground Coal Dust with Fused Silica: Effects of Relative Humidity and Particle Size

Author:

Zhou Shujun12,Yang Yue12,Shang Hongfei3ORCID

Affiliation:

1. School of Mechanical and Electrical Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

2. Key Laboratory of Intelligent Mining and Robotics, Ministry of Emergency Management, Beijing 100083, China

3. State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China

Abstract

Coal dust particles adhering to a camera lens reduce its light transmittance, which deteriorates the performance of the camera and may lead to serious problems with mining equipment that requires visual ability. Aiming at improving coal dust removal and cleaning technologies, the adhesion behavior of coal dust with fused silica is studied here. Experiments were conducted from microscopic and statistical points of view. The adhesion force between a single coal dust particle and fused silica is tested using atomic force microscopy (AFM), and the number and size distribution of large amounts of coal dust particles on fused silica are tested using a home-made adhesion experimental platform and image processing method. The results show that the adhesion force increases at high relative humidity (RH); it is dominated by van der Waals forces at low RH and capillary forces at high RH. The fused silica glass surface is predominantly covered by small-sized coal dust particles, and the total number of particles as well as the proportion of large-sized particles increases with RH. The theoretical values of van der Waals and capillary forces are significantly larger than the experimental values, owing to the irregular shape and roughness of the surface of the coal dust.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3