Preparation and Mechanical Properties of PBAT/Silanized Cellulose Composites

Author:

Wang Xiangyun12,Mo Wenlong3ORCID,Zeng Yongming124,Wang Jide3

Affiliation:

1. Department of Chemistry and Chemical Engineering, Changji University, Changji 831100, China

2. Xinjiang Key Laboratory of High Value Green Utilization of Low-Rank Coal, Changji 831100, China

3. Department of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830000, China

4. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

Abstract

Polybutylene adipate-terephthalate (PBAT) is a fully biodegradable polyester, which has been proven to be the most suitable alternative to traditional plastics. However, due to the low strength of PBAT (17.2 MPa) and high price, the use of PBAT has a degree of limitations. To obtain a cost-effective and high-performance composite material of PBAT, for this study we selected microcrystalline cellulose, which is inexpensive and easily available, as the reinforcing medium. However, due to the hydrophobicity of PBAT, the mechanical properties of PBAT when mixed with hydrophilic cellulose were low. In order to improve the compatibility of cellulose and PBAT, this study selected hexadecyltrimethoxysilane (HDTMS) containing long carbon chains to silanize microcrystalline cellulose (MCC) to obtain silanized cellulose (SG). Three types of SGs with different degrees of silanization were obtained by controlling HDTMS with different mass ratios (1:10; 3:10; 5:10) to react with MCC. Characterization of these three types of SGs was conducted using FTIR, TEM, and water absorption analysis. The results demonstrated the successful synthesis of SG. With the increase in the reaction ratio of HDTMS and MCC, the size of the nanoparticles increases, and the water absorption decreases significantly. Subsequently, PBAT/SG composites were prepared by blending three kinds of silanized cellulose with PBAT in different proportions by the sol-gel method. To study the thermal stability and compatibility, the mechanical properties of the composites were evaluated, including thermogravimetric testing, scanning analysis, and dynamic thermomechanical testing. The optimal blending ratio and the optimal type of silane cellulose were found. Analysis of the mechanical properties revealed that the tensile strength initially increased and then decreased with increasing blending ratio for all three composites tested. Among them, the PBAT/SG2 composites exhibit superior performance, with a maximum tensile strength reaching 22 MPa at an 85/15 blending ratio, nearly 30% higher than that of pure PBAT alone. The addition of SG significantly improved the strength of the PBAT, and SG2 is more suitable for preparing high-strength composite materials. In addition, after the addition of SG, the yield stress of the composite is improved while maintaining good thermal stability. Both the SEM and DMA results indicated good compatibility of the PBAT/SG composites. This study provides a new idea for the industrial-scale development of degradable polyesters with low cost and good mechanical properties.

Funder

Natural Science Foundation of Changji University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3