Affiliation:
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
Abstract
In this study, lithium was recovered from spent lithium-ion batteries through the crystallization of lithium carbonate. The influence of different process parameters on lithium carbonate precipitation was investigated. The results indicate that under the conditions of 90 °C and 400 rpm, a 2.0 mol/L sodium carbonate solution was added at a rate of 2.5 mL/min to a 2.5 mol/L lithium chloride solution, yielding lithium carbonate with a recovery rate of 85.72% and a purity of 98.19%. The stirring rate and LiCl solution concentration significantly impact the particle size of lithium carbonate aggregates. As the stirring rate increases from 200 to 800 rpm, the average particle size decreases from 168.694 μm to 115.702 μm. Conversely, an increase in the LiCl solution concentration reduces the lithium carbonate particle size, with an average particle size of only 97.535 μm being observed at a LiCl solution concentration of 2.5 mol/L. It was also observed that nickel and cobalt ions become incorporated into the crystal lattice of lithium carbonate, thereby affecting the growth and morphology of lithium carbonate.