A Novel Slickwater System with Strong-Polarity Fibers for High-Efficiency Proppant Flowback Mitigation

Author:

Xu Yang12,Chen Ping12,Wang Kun12,Wang Suoliang12,Meng Qingcong12,Li Mingqi12,Ma Yingxian34,Zeng Jie34

Affiliation:

1. Research Institute of Drilling & Production Engineering, CNPC Chuanqing Drilling Engineering Company Limited, Xi’an 710018, China

2. National Engineering Laboratory for Exploration and Development of Low-Permeability Oil & Gas Fields, Xi’an 710018, China

3. Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, China

4. National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China

Abstract

To avoid or mitigate proppant flowback after a massive hydraulic fracturing of tight formations and to reduce its impairment to well productivity, this study developed a new type of fiber material with strong polarity based on polyester fiber. This fiber material is modified by introducing a strong-polar functional monomer into the molecular structure and adopting the means of surface grafting. On the basis of this fiber material, a fiber slip-water system with excellent dispersion performance can be established to prevent proppant backflow. Laboratory experiments were performed to analyze the specific function of the fibers with strong polarity and its working mechanisms. The results indicate that strong-polarity fibers have excellent dispersion performance. The fibers and resistance-reducing agents form an interwoven structure that can carry proppants, resulting in the enhancement of the sand-carrying capacity of the fracturing fluid system and the overall strength of the sand bank. In terms of the sand-carrying capacity and mitigation of proppant flowback, strong-polar fibers have significantly improved compared to unmodified fibers. In a 5 mm simulated crack, strong-polar fibers can increase the static settling time of 70/140 mesh quartz sand proppant by 26.5%. Meanwhile, the placement height of the sand embankment increased by 23.4% after the settlement of the proppant. In proppant transport experiments, strong-polar fibers with a mass fraction of 0.4% can increase the transport distance of proppants by more than 50%. Within the closed stress range of 2–10 MPa, the concentration of 0.5% strong-polar fibers increases the critical sand flow rate of the proppant by more than twice. The strong-polarity fiber system introduced in this study can be used to develop a fiber slickwater fracturing fluid system suitable for the massive hydraulic fracturing of tight reservoirs and has broad application prospects in the field of proppant flowback mitigation in tight reservoirs.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3