Affiliation:
1. Leibniz Institute for Solid State and Materials Research (IFW) Dresden e.V., Helmholtzstraße 20, D-01069 Dresden, Germany
Abstract
The constantly growing demand for renewable electrical energy keeps the continuation of battery-related research imperative. In spite of significant progress made in the development of Na- and K-ion systems, Li-ion batteries (LIBs) still prevail in the fields of portative devices and electric or hybrid vehicles. Since the amount of lithium on our planet is significantly limited, studies dedicated to the search for and development of novel materials, which would make LIBs more efficient in terms of their specific characteristics and life lengths, are necessary. Investigations of less industry-related systems are also important, as they provide general knowledge which helps in understanding directions and strategies for the improvement of applied materials. The current paper represents a comprehensive study of cubic Li2Fe1−xCoxSeO compounds with an anti-perovskite structure. These solid solutions demonstrate both cationic and anionic electrochemical activity in lithium cells while being applied as cathodes. Cobalt cations remain inactive; however, their amount in the structure defines if the Se0/Se2− or Fe3+/Fe2+ redox couple dominates the charge compensation mechanism upon (de)lithiation. Apart from that, cobalt affects the structural stability of the materials during cycling. These effects were evaluated by means of operando XRD and XAS techniques. The outcomes can be useful for both fundamental and practice-relevant research.
Funder
IFW Dresden excellence program, German Federal Ministry of Education and Research (BMBF) in the project HeNa
German Research Foundation (DFG) in the project KIBSS