Adsorption of Zinc(II) Ion by Spent and Raw Agaricus bisporus in Aqueous Solution

Author:

Zhang Xiaoyu1,Zhao Caiyi1,Xue Feng2,Xia Beicheng3,Lu Yuanyuan1,Ying Rongrong1,Hu Zhewei1

Affiliation:

1. Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China

2. Shenzhen Degree of Freedom Eco Technology Co., Ltd., Shenzhen 518116, China

3. School of Environment Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China

Abstract

A significant environmental concern globally is the pollution of water bodies as a result of heavy metals. To date, various attempts have been made to effectively remove heavy metals, such as those that use synthetic and biogenic materials to abate and control water pollution. The biological removal of pollutants from water is an efficient and environmentally friendly technique. In this study, we evaluated the biosorption characteristics of Zn2+ ions from aqueous solution by spent composed of raw Agaricus biosporium (RAB) and A. biosporium (SCAB). We added different biosorption doses, metal ions, and initial concentrations of pollutants to explore the adsorption of Zn2+ by RAB and SCAB. We applied pseudo-first- and second-order models to investigate the biosorption kinetics. According to our results, the rate of Zn2+ removal from the aqueous solution using raw biomass was significantly lower than that using sodium citrate-treated biomass of SCAB. When the Zn2+ concentration increased from 10 mg L−1 to 200 mg L−1, the rate of removal of RAB decreased from 73.9% to 38.4%, and that of Zn2+ by SCAB decreased from 99.9% to 75.9%. As we increased the biosorbent dose, the rate of Zn2+ removal by SCAB increased. Interestingly, Zn2 biosorption was inhibited by heavy co ions (Cu2+ and Pb2+) and light metals (e.g., Na+, Mg2+, K+, and Ca2+). When treating wastewater polluted with Zn2+, Pb2+, and Cu2+, SCAB showed good potential. The results of this study provide a scientific basis for an environmentally sound approach to controlling water pollution.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3