An Improved System-Level Calibration Scheme for Rotational Inertial Navigation Systems

Author:

Wei QiushuoORCID,Zha Feng,He Hongyang,Li Bao

Abstract

The system-level calibration technology of rotational inertial navigation is one of the main methods to improve the accuracy of inertial navigation, and the design of the calibration scheme is the key to calibration technology. By the establishment of the error model of inertial navigation system, a 30-position calibration scheme is designed in this study. Based on the 30-dimensional Kalman filter, the constant errors, scale factor errors and installation error of gyroscope and accelerometer are identified. Comparing the traditional schemes and the 30-position scheme with the simulation experiment, the observability of the 30-position scheme is higher, the residual error of the estimated sensor is smaller and the navigation positioning accuracy after the estimated inertial sensor error parameter compensation is higher, which verifies the feasibility of the 30-position scheme. Finally, the measured experiment uses the 30-position scheme to estimate the error of a certain type of IMU sensor, and the calibration curve of the error parameter is well converged before the end of the calibration experiment, so it has certain practical value.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference22 articles.

1. A Comprehensive Overview of Inertial Sensor Calibration Techniques

2. Eight-position systematic calibration method for SINS based on two-axis turntable with temperature compensation;Wang;J. Chin. Inert. Technol.,2019

3. Analysis and Calibration of the Nonorthogonal Angle in Dual-Axis Rotational INS

4. A unified scheme for rotation modulation and self-calibration of dual-axis rotating SINS

5. Multi-position systematic calibration method for RLG-SINS;Shi;Infrared Laser Eng.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3