Mitochondrial Consequences of Organ Preservation Techniques during Liver Transplantation

Author:

Horváth Tamara,Jász Dávid Kurszán,Baráth Bálint,Poles Marietta Zita,Boros Mihály,Hartmann PetraORCID

Abstract

Allograft ischemia during liver transplantation (LT) adversely affects the function of mitochondria, resulting in impairment of oxidative phosphorylation and compromised post-transplant recovery of the affected organ. Several preservation methods have been developed to improve donor organ quality; however, their effects on mitochondrial functions have not yet been compared. This study aimed to summarize the available data on mitochondrial effects of graft preservation methods in preclinical models of LT. Furthermore, a network meta-analysis was conducted to determine if any of these treatments provide a superior benefit, suggesting that they might be used on humans. A systematic search was conducted using electronic databases (EMBASE, MEDLINE (via PubMed), the Cochrane Central Register of Controlled Trials (CENTRAL) and Web of Science) for controlled animal studies using preservation methods for LT. The ATP content of the graft was the primary outcome, as this is an indicator overall mitochondrial function. Secondary outcomes were the respiratory activity of mitochondrial complexes, cytochrome c and aspartate aminotransferase (ALT) release. Both a random-effects model and the SYRCLE risk of bias analysis for animal studies were used. After a comprehensive search of the databases, 25 studies were enrolled in the analysis. Treatments that had the most significant protective effect on ATP content included hypothermic and subnormothermic machine perfusion (HMP and SNMP) (MD = −1.0, 95% CI: (−2.3, 0.3) and MD = −1.1, 95% CI: (−3.2, 1.02)), while the effects of warm ischemia (WI) without cold storage (WI) and normothermic machine perfusion (NMP) were less pronounced (MD = −1.8, 95% CI: (−2.9, −0.7) and MD = −2.1 MD; CI: (−4.6; 0.4)). The subgroup of static cold storage (SCS) with shorter preservation time (< 12 h) yielded better results than SCS ≥ 12 h, NMP and WI, in terms of ATP preservation and the respiratory capacity of complexes. HMP and SNMP stand out in terms of mitochondrial protection when compared to other treatments for LT in animals. The shorter storage time at lower temperatures, together with the dynamic preservation, provided superior protection for the grafts in terms of mitochondrial function. Additional clinical studies on human patients including marginal donors and longer ischemia times are needed to confirm any superiority of preservation methods with respect to mitochondrial function.

Funder

National Research, Development and Innovation Office

Economic Development and Innovation Operative Program

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3