Muscle Damage in Systemic Sclerosis and CXCL10: The Potential Therapeutic Role of PDE5 Inhibition

Author:

Corinaldesi Clarissa,Ross Rebecca L.,Abignano Giuseppina,Antinozzi CristinaORCID,Marampon Francesco,di Luigi Luigi,Buch Maya H.,Riccieri Valeria,Lenzi Andrea,Crescioli ClaraORCID,Del Galdo Francesco

Abstract

Skeletal muscle damage is a common clinical manifestation of systemic sclerosis (SSc). C-X-C chemokine ligand 10 (CXCL10) is involved in myopathy and cardiomyopathy development and is associated with a more severe SSc prognosis. Interestingly, the phosphodiesterase type 5 inhibitor (PDE5i) sildenafil reduces CXCL10 sera levels of patients with diabetic cardiomyopathy and in cardiomyocytes. Here, we analyzed the levels of CXCL10 in the sera of 116 SSc vs. 35 healthy subjects and explored differences in 17 SSc patients on stable treatment with sildenafil. CXCL10 sera levels were three-fold higher in SSc vs. healthy controls, independent of subset and antibody positivity. Sildenafil treatment was associated with lower CXCL10 sera levels. Serum CXCL10 strongly correlated with the clinical severity of muscle involvement and with creatine kinase (CK) serum concentration, suggesting a potential involvement in muscle damage in SSc. In vitro, sildenafil dose-dependently reduced CXCL10 release by activated myocytes and impaired cytokine-induced Signal transducer and activator of transcription 1 (STAT1), Nuclear factor-κB (NFκB) and c-Jun N-terminal kinase (JNK) phosphorylation. This was also seen in cardiomyocytes. Sildenafil-induced CXCL10 inhibition at the systemic and human muscle cell level supports the hypothesis that PDE5i could be a potential therapeutic therapy to prevent and treat muscle damage in SSc.

Funder

Italian Ministry of Education, University and Research

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3