An Ensemble of Weight of Evidence and Logistic Regression for Gully Erosion Susceptibility Mapping in the Kakia-Esamburmbur Catchment, Kenya

Author:

Nkonge Lorraine K.1,Gathenya John M.2ORCID,Kiptala Jeremiah K.3ORCID,Cheruiyot Charles K.3,Petroselli Andrea4ORCID

Affiliation:

1. Civil Engineering (Environment, Arid and Semi-Arid Lands), The Pan African University Institute for Basic Sciences, Technology and Innovation (PAUSTI), Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya

2. Soil, Water and Environmental Engineering Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya

3. Department of Civil, Construction and Environmental Engineering, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya

4. Department of Economics, Engineering, Society and Business Organization (DEIM), Tuscia University, 01100 Viterbo, Italy

Abstract

Gully erosion is the most intensive type of water erosion and it leads to land degradation across the world. Therefore, analyzing the spatial occurrence of this phenomenon is crucial for land management. The objective of this research was to predict gully erosion susceptibility in the Kakia-Esamburmbur catchment in Narok, Kenya, which is badly affected by gully erosion. GIS and ensemble techniques using weight of evidence (WoE) and logistic regression (LR) models were used to map the susceptibility to gully erosion. First, 130 gullies were detected in the study area and portioned out 70:30 for training and validation, respectively. Nine gully erosion conditioning factors were selected as predictors. The relationships between the gully locations and the factors were identified and quantified using WoE, LR and WoE–LR ensemble models. The results show that land use/cover, distance to road, sediment transport index (STI) and topographic wetness index (TWI) are the factors that have the most influence on gully occurrence in the catchment. Additionally, the WoE–LR model performed better than the WoE and LR models, producing an AUC value of 0.88, which was higher than that of the WoE model, 0.62 and the LR model, 0.63. Therefore, the WoE–LR ensemble model is useful in gully erosion susceptibility mapping and is of help to decision makers in land-use planning.

Funder

Pan African University of Basic Sciences, Technology and Innovation

National Research Fund

Kenya

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3