An Advanced Protocol for the Quantification of Marine Sediment Viruses via Flow Cytometry

Author:

Heinrichs Mara Elena,De Corte Daniele,Engelen BertORCID,Pan Donald

Abstract

Viruses are highly abundant, diverse, and active components of marine environments. Flow cytometry has helped to increase the understanding of their impact on shaping microbial communities and biogeochemical cycles in the pelagic zone. However, to date, flow cytometric quantification of sediment viruses is still hindered by interference from the sediment matrix. Here, we developed a protocol for the enumeration of marine sediment viruses by flow cytometry based on separation of viruses from sediment particles using a Nycodenz density gradient. Results indicated that there was sufficient removal of background interference to allow for flow cytometric quantification. Applying this new protocol to deep-sea and tidal-flat samples, viral abundances enumerated by flow cytometry correlated well (R2 = 0.899) with counts assessed by epifluorescence microscopy over several orders of magnitude from marine sediments of various compositions. Further optimization may be needed for sediments with low biomass or high organic content. Overall, the new protocol enables fast and accurate quantification of marine sediment viruses, and opens up the options for virus sorting, targeted viromics, and single-virus sequencing.

Funder

Japan Society for the Promotion of Science

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3