Flexible Electricity Dispatch of an Integrated Solar Combined Cycle through Thermal Energy Storage and Hydrogen Production

Author:

Reyes-Belmonte Miguel ÁngelORCID,Ambrona-Bermúdez Alejandra,Calvo-Blázquez Daniel

Abstract

In this work, the flexible operation of an Integrated Solar Combined Cycle (ISCC) power plant has been optimized considering two different energy storage approaches. The objective of this proposal is to meet variable users’ grid demand for an extended period at the lowest cost of electricity. Medium temperature thermal energy storage (TES) and hydrogen generation configurations have been analyzed from a techno-economic point of view. Results found from annual solar plant performance indicate that molten salts storage solution is preferable based on the lower levelized cost of electricity (0.122 USD/kWh compared to 0.158 USD/kWh from the hydrogen generation case) due to the lower conversion efficiencies of hydrogen plant components. However, the hydrogen plant configuration exceeded, in terms of plant availability and grid demand coverage, as fewer design constraints resulted in a total demand coverage of 2155 h per year. It was also found that grid demand curves from industrial countries limit the deployment of medium-temperature TES systems coupled to ISCC power plants, since their typical demand curves are characterized by lower power demand around solar noon when solar radiation is higher. In such scenarios, the Brayton turbine design is constrained by noon grid demand, which limits the solar field and receiver thermal power design.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3