Effects of Liming on the Morphologies and Nutrients of Different Functional Fine Roots of Cunninghamia lanceolata Seedlings

Author:

Yu XinORCID,Guan Xin,Xiao Fuming,Zhang Weidong,Yang Qingpeng,Wang Qingkui,Wang Silong,Chen LongchiORCID

Abstract

Soil acidification is an important cause of the productivity decline of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook)—one of the most important timber species in China. Although liming is an effective measure for reversing the effects of soil acidification, the effects on the morphologies and nutrients of different functional roots remain ambiguous. Thus, this study aimed to investigate the effects of liming on fine root traits of Chinese fir seedlings between two root function types (absorptive roots (AR) and transport roots (TR)). Chinese fir seedlings with equal performance were planted in each pot with two acidification soils (pH 3.6 and pH 4.3) and three levels of liming (0, 1000, and 4000 kg CaO ha−1). Our data showed that liming had no effect on the root biomass (RB) of AR and TR in mildly acidified soil, but it decreased the RB in severely acidified soil. Specific root length (SRL) of AR and TR were significantly increased by 24% and 27% with a high liming dose in mildly acidified soil, respectively. The specific root areas (SRA) of AR and TR were significantly increased by 10% and 22% with a high liming dose in mildly acidified soil, respectively. Furthermore, root N concentrations were significantly increased by 26% and 30% in AR and TR with a high liming dose in mildly acidified soil, respectively. Root P concentration of AR was significantly increased by 21% with a high liming dose in mildly acidified soil while root Ca concentration was significantly increased with all treatments. A similar trend was also observed in the Ca/Al ratio of roots. Both low and high doses of liming decreased the root Al concentration of AR by 26% and 31% in mildly acidified soil, respectively; however, there was no significant effect on TR in both soils. Our findings indicated that liming could alleviate Al toxicity to fine roots and increase root investment efficiency and absorption capacity. Liming also had coordinate effects on SRL, SRA, Root tissue density (RTD), N, P, Ca and Ca/Al between AR and TR. Our study suggested that to gain a comprehensive understanding of plant growth strategy, researchers in future studies must consider different functional roots rather than just the absorption part. Our results also revealed that the root system became more “acquisitive” due to the remediation of Al toxicity, which may be an important mechanism underlying the increment of the productivity of Chinese fir plantations undergoing liming.

Funder

The National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3