Abstract
In this research, poly(ε-caprolactone) (PCL) was melt-mixed with sepiolite nanoclays in a twin-screw extruder. In a subsequent step, the extruded films were drawn in the solid state to highly oriented nanocomposite films or tapes. A twin-screw extruder equipped with a Sultzer mixer for improved mixing in combination with a bench top drawing unit was used to prepare oriented nanocomposite tapes of different sepiolite loading and draw ratios. In order to study the influence of the solidification step on the drawability of the materials, different cooling procedures were applied prior to drawing. Optical microscopy images showed that slow or fast solidification using different chill rolls settings (open or closed) for the cast films resulted in different morphological conditions for subsequent drawing. The addition of sepiolite nanofillers led to nucleation and faster crystallization kinetics and oriented tapes which deformed by homogenous deformation rather than necking. The addition of sepiolite significantly improved the mechanical properties of both undrawn and drawn PCL tapes and Young’s modulus (1.5 GPa) and tensile strength (360 MPa) for composites based on 4 wt% sepiolite were among the highest ever reported for PCL nanocomposites. Interestingly, samples cooled with open chill rolls (slow crystallization) showed the highest modulus while solidification with closed rolls (fast crystallization) showed the highest tensile strength after drawing.
Subject
Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献