Abstract
Although birds belonging to order Caprimulgiformes show extensive karyotype variation, data concerning their genomic organization is still scarce, as most studies have presented only results obtained from conventional staining analyses. Nevertheless, some interesting findings have been observed, such as the W chromosome of the Common Potoo, Nyctibius griseus (2n = 86), which has the same morphology and size of the Z chromosome, a rare feature in Neognathae birds. Hence, we aimed to investigate the process by which the W chromosome of this species was enlarged. For that, we analyzed comparatively the chromosome organization of the Common Potoo and the Scissor-tailed Nightjar, Hydropsalis torquata (2n = 74), which presents the regular differentiated sex chromosomes, by applying C-banding, G-banding and mapping of repetitive DNAs (microsatellite repeats and 18S rDNA). Our results showed an accumulation of constitutive heterochromatin in the W chromosome of both species. However, 9 out of 11 microsatellite sequences hybridized in the large W chromosome in the Common Potoo, while none of them hybridized in the W chromosome of the Scissor-tailed Nightjar. Therefore, we can conclude that the accumulation of microsatellite sequences, and consequent increase in constitutive heterochromatin, was responsible for the enlargement of the W chromosome in the Common Potoo. Based on these results, we conclude that even though these two species belong to the same order, their W chromosomes have gone through different evolutionary histories, with an extra step of accumulation of repetitive sequences in the Common Potoo.