Zero-Discharge Process for Recycling of Tetrahydrofuran–Water Mixtures

Author:

Schuldt Karina,Brinkmann Torsten,Georgopanos ProkopiosORCID

Abstract

The sustainable design of separation and polymer synthesis processes is of great importance. Therefore, an energy-efficient process for the purification of tetrahydrofuran (THF)–water (H2O) solvent mixtures from an upstream polymer synthesis process in pilot scale was developed with the aim to obtain high purity separation products. The advantages and limitations of a hybrid process in the pilot scale were studied utilizing an Aspen Plus Dynamics® simulation at different pressures to prove the feasibility and energy efficiency. For the rough separation of the two components, distillation was chosen as the first process step. In this way, a separation of a water stream of sufficient quality for further precipitations after polymer synthesis could be achieved. In order to overcome the limitations of the distillation process posed by the azeotropic point of the mixture, a vapor permeation is used, which takes advantage of the heat of evaporation already used in the distillation column. For the purpose of achieving the required low water contents, an adsorption column is installed downstream for final THF purification. This leads to a novel hybrid separation process that is energy efficient and thus allows also the use of the solvents again for upstream polymer synthesis achieving the high purity requirements in a closed-loop process.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference41 articles.

1. Statistahttps://www.statista.com/statistics/1009366/market-value-solvent-recycling-equipment-globally/

2. Simulation of the tetrahydrofuran dehydration process by extractive distillation in Aspen Plus;Gómez;Latin Amer. Appl. Res.,2009

3. Separation of Tetrahydrofuran from Aqueous Mixtures by Pervaporation

4. Purification of tetrahydrofuran from its aqueous azeotrope by extractive distillation: Pilot plant studies

5. Separation of Tetrahydrofuran–Water Azeotropic Mixture by Batch Extractive Distillation Process

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3