Lateral Vibration Control of Long-Span Small-Radius Curved Steel Box Girder Pedestrian Bridge with Distributed Multiple Tuned Mass Dampers

Author:

Wei Zhaolan,Lv Mengting,Wu Siyin,Shen Minghui,Yan Meng,Jia Shaomin,Bao YiORCID,Han Peng,Zou Zuyin

Abstract

Curved pedestrian bridges are important urban infrastructure with the desired adaptability to the landscape constraints and with aesthetic benefits. Pedestrian bridges feature thin cross-sections, which provide sufficient load capacities but lead to low natural frequencies that make the bridges susceptible to vibration under pedestrian excitation. This study investigates the lateral vibration of a curved bridge with a small radius down to 20 m, proposes an approach to mitigate the lateral vibration of bridges with large curvatures using distributed multiple tuned mass dampers (MTMD), and conducts in-situ bridge tests to evaluate the vibration mitigation performance. The lateral vibration was investigated through in-situ tests and finite element analysis as well as the code requirements. The key parameters of the distributed MTMD system were improved by strategically selecting the mass ratio, bandwidth, center frequency ratio, and damper number. The results showed that the curved bridge was subjected to significant lateral vibration due to the coupling of torque and moment, and the recommended design parameters for the studied bridge were derived, i.e., the total mass ratio is 0.02, bandwidth is 0.15, center frequency ratio is 1.0, and damper number is 3. The proposed approach effectively improves the deployment of MTMD for lateral vibration control of the curved bridge. The field tests showed that the vibration was reduced by up to 82% by using the proposed approach.

Funder

National Natural Science Foundation of China

the Professional Construction Support Plan of Sichuan Agricultural University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3