RAEN: Rate Adaptation for Effective Nodes in Backscatter Networks

Author:

Zhao Jumin,Liu Qi,Li DengaoORCID,Wang Qiang,Bai Ruiqin

Abstract

A backscatter network, as a key enabling technology for interconnecting plentiful IoT sensing devices, can be applicable to a variety of interesting applications, e.g., wireless sensing and motion tracking. In these scenarios, the vital information-carrying effective nodes always suffer from an extremely low individual reading rate, which results from both unpredictable channel conditions and intense competition from other nodes. In this paper, we propose a rate-adaptation algorithm for effective nodes (RAEN), to improve the throughput of effective nodes, by allowing them to transmit exclusively and work in an appropriate data rate. RAEN works in two stages: (1) RAEN exclusively extracts effective nodes with an identification module and selection module; (2) then, RAEN leverages a trigger mechanism, combined with a random forest-based classifier, to predict the overall optimal rate. As RAEN is fully compatible with the EPC C1G2 standard, we implement the experiment through a commercial reader and multiple RFID tags. Comprehensive experiments show that RAEN improves the throughput of effective nodes by 3×, when 1/6 of the nodes are effective, compared with normal reading. What is more, the throughput of RAEN is better than traditional rate-adaptation methods.

Funder

The General Object of National Natural Science Foundation under Grants

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A rate adaption algorithm for backscatter networks in mobile scenes;International Journal of Sensor Networks;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3