Channel Selection in Uncoordinated IEEE 802.11 Networks Using Graph Coloring

Author:

Gimenez-Guzman Jose Manuel1ORCID,Marsa-Maestre Ivan2ORCID,de la Hoz Enrique2ORCID,Orden David3ORCID,Herranz-Oliveros David2

Affiliation:

1. Universitat Politècnica de València, Departamento de Comunicaciones, 46022 València, Spain

2. Universidad de Alcalá, Computer Engineering Department, 28805 Alcalá de Henares, Spain

3. Universidad de Alcalá, Department of Physics and Mathematics, 28805 Alcalá de Henares, Spain

Abstract

One of the big challenges in decentralized Wi-Fi networks is how to select channels for the different access points (APs) and their associated stations (STAs) in order to minimize interference and hence maximize throughput. Interestingly enough, de facto standards in terms of uncoordinated channel selection are quite simple, and in many cases result in fairly suboptimal channel allocations. Here, we explore how graph coloring can be used to evaluate and inform decisions on Wi-Fi channel selection in uncoordinated settings. Graph coloring, in its most basic form, is a classic mathematical problem where colors have to be assigned to nodes in a graph while avoiding assigning the same color to adjacent nodes. In this paper, we modeled Wi-Fi uncoordinated channel selection as a graph coloring problem and evaluated the performance of different uncoordinated channel selection techniques in a set of representative scenarios of residential buildings. The results confirm some of the widely accepted consensus regarding uncoordinated channel selection but also provide some new insights. For instance, in some settings, it would be better to delegate the decision on which channel to use to transmit the STAs, rather than having the AP make the decision on its own, which is the usual way.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3