Adaptative Cover to Achieve Thermal Comfort in Open Spaces of Buildings: Experimental Assessment and Modelling

Author:

Guerrero Delgado MCarmen,Castro Medina DanielORCID,Sánchez Ramos JoseORCID,Palomo Amores Teresa Rocío,Álvarez Domínguez Servando,Tenorio Ríos José AntonioORCID

Abstract

The global need for healthy and safe open spaces faces continuous temperature rise due to the heat island phenomenon and climate change. This problem requires new strategies for improving the habitability of open spaces (indoor and outdoor conditions in buildings). These techniques include reducing solar radiation, reducing the temperature of surrounding surfaces, and reducing the air temperature. The radiant solutions are essential for outdoor comfort, both in summer and in winter. They are easy to integrate into open spaces. This study explores a new concept of radiant solutions adapted for outdoor spaces. The solution was evaluated in a test cell to obtain its thermal behaviour in different operation conditions. Solutions were optimised for operating in a cooling regimen since it has been identified that the demands for comfort in open spaces in hot climates during the most severe summer months are more pronounced. Experimental results have allowed getting an inverse model to analyse the thermal behaviour of the solution. The inverse model achieved high precision in its estimations. Also, it facilitated knowing the radiant and convective effects. Only the radiant heat flux is relevant in open spaces with a low level of air confinement. Finally, the discussion describes the application of the proposed model. The model allows the replicability of the solution—creating new designs (integration) or evaluating into different operating conditions of the system. This discussion demonstrates the high level of knowledge acquired in the characterisation of the solution studied.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3