Solution to Solid Wood Board Cutting Stock Problem

Author:

Tang Min,Liu Ying,Ding FenglongORCID,Wang ZhengguangORCID

Abstract

In the production process for wooden furniture, the raw material costs account for more than 50% of furniture costs, and the utilization rate of raw materials depends mainly on the layout scheme. Therefore, a reasonable layout is an important measure to reduce furniture costs. This paper investigates the solid wood board cutting stock problem (CSP) and establishes an optimization model, with the goal of the highest possible utilization rate for original boards. An ant colony-immune genetic algorithm (AC-IGA) is designed to solve this model. The solutions of the ant colony algorithm are used as the initial population of the immune genetic algorithm, and the optimal solution is obtained using the immune genetic algorithm after multiple iterations are transformed into the accumulation of global pheromones, which improves the search ability and ensures the solution quality. The layout process of the solid wood board is abstracted into the construction process of the solution. At the same time, in order to prevent premature convergence, several improved methods, such as a global pheromone hybrid update and adaptive crossover probability, are proposed. Comparative experiments are designed to verify the feasibility and effectiveness of the AC-IGA, and the experimental results show that the AC-IGA has better solution precision and global search ability compared with the ant colony algorithm (ACA), genetic algorithm (GA), grey wolf optimizer (GWO), and polar bear optimization (PBO). The utilization rate increased by more than 2.308%, which provides effective theoretical and methodological support for furniture enterprises to improve economic benefits.

Funder

Jiangsu Provincial Key Research and Development Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference50 articles.

1. Application of Material Characteristics in Furniture Design;Chen;Packag. Eng.,2017

2. Finite Element Analysis of Wood Materials

3. The Sixth National Forest Resources Inventory and the Status of Forest Resources;PRC;Green China,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3