A Novel Green Alternative for a Room Prototype Constructed with Entire Recycled PET Bottles and a Green Roof Composed of Waste Materials

Author:

Pérez Bueno José de JesúsORCID,Mendoza López Maria Luisa,Ceja Soto Flavio Roberto,Reyes Araiza José LuisORCID,Ramírez Jiménez Rubén,Pérez Ramos Martha Elva,Manzano-Ramírez Alejandro

Abstract

In this study, we propose a methodology for constructing a prototype room intended primarily for people with low incomes, allowing self-construction practices and upcycling of widely available waste materials in their original form. Mechanical tests were conducted on single bottles of poly(ethylene terephthalate) (PET) filled with different materials as well as on entire PET bottle/concrete blocks. Higher strength was observed when the bottles were in a horizontal position. The mechanical performance of the construction solution adopted for the prototype was not tested, and therefore its structural adequacy was not proven. The insulating multilayer roof was composed of waste plastic bags, two layers of uncapped PET bottles of differing shapes and sizes, another layer of plastic bags, waste cardboard, soil from the site, and a top endemic plant green layer. The PET bottles used in construction were filled with clay from the site, although bottles filled with fly ash achieved better mechanical results. The bottles can also be used uncapped and empty, which would simplify the process considerably by reducing the filling stage. This can be considered to be the main proposal for this type of building. There were almost negligible solid wastes generated, since they were used in the multilayered green roof. From a top view, the prototype mimics the surroundings because the green roof incorporates soil from the site and endemic plants.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference56 articles.

1. World Population Growth https://ourworldindata.org/world-population-growth

2. Income Mountains https://www.gapminder.org/fw/income-mountains/

3. Environmental Performance of Residential Buildings: A Life Cycle Assessment Study in Saudi Arabia

4. Sustainability framework for buildings via data analytics

5. Sustainable Construction as a Competitive Advantage

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3