Action Recognition Algorithm of Spatio–Temporal Differential LSTM Based on Feature Enhancement

Author:

Hu KaiORCID,Zheng Fei,Weng Liguo,Ding Yiwu,Jin Junlan

Abstract

The Long Short-Term Memory (LSTM) network is a classic action recognition method because of its ability to extract time information. Researchers proposed many hybrid algorithms based on LSTM for human action recognition. In this paper, an improved Spatio–Temporal Differential Long Short-Term Memory (ST-D LSTM) network is proposed, an enhanced input differential feature module and a spatial memory state differential module are added to the network. Furthermore, a transmission mode of ST-D LSTM is proposed; this mode enables ST-D LSTM units to transmit the spatial memory state horizontally. Finally, these improvements are added into classical Long-term Recurrent Convolutional Networks (LRCN) to test the new network’s performance. Experimental results show that ST-D LSTM can effectively improve the accuracy of LRCN.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3