Abstract
The Long Short-Term Memory (LSTM) network is a classic action recognition method because of its ability to extract time information. Researchers proposed many hybrid algorithms based on LSTM for human action recognition. In this paper, an improved Spatio–Temporal Differential Long Short-Term Memory (ST-D LSTM) network is proposed, an enhanced input differential feature module and a spatial memory state differential module are added to the network. Furthermore, a transmission mode of ST-D LSTM is proposed; this mode enables ST-D LSTM units to transmit the spatial memory state horizontally. Finally, these improvements are added into classical Long-term Recurrent Convolutional Networks (LRCN) to test the new network’s performance. Experimental results show that ST-D LSTM can effectively improve the accuracy of LRCN.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献