Abstract
In microCT imaging, there is a close relationship between the dose of radiation absorbed by animals and the image quality, or spatial resolution. Although the radiation levels used in these systems are generally non-lethal, they can induce cellular or molecular alterations that affect the experimental results. Here, we describe a dosimetric characterization of the different image acquisition modalities used by the microCT unit of the Albira microPET/SPECT/CT scanner, which is a widely used multimodal imaging system in preclinical research. The imparted dose at the animal surface (IDS) was estimated based on Boone’s polynomial interpolation method and experimental measurements using an ionization chamber and thermoluminescent dosimeters. The results indicated that the imparted dose at surface level delivered to the mice was in the 30 to 300 mGy range. For any combination of current (0.2 or 0.4 mA) and voltage (35 or 45 kV), in the Standard, Good, and Best image acquisition modalities, the dose imparted at surface level in rodents was below its threshold of deterministic effects (250 mGy); however, the High Res modality was above that threshold.
Funder
Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献