Abstract
Bentonite is used as a buffer material in most high-level radioactive waste (HLW) repository designs. Smectite clay is the main mineral component of bentonite and plays a key role in controlling the buffer’s physical and chemical behaviors. Moreover, the long-term functions of buffer clay could be lost through smectite dehydration under the prevailing temperature stemming from the heat of waste decay. Therefore, the influence of waste decay temperatures on bentonite performance needs to be studied. However, seldom addressed is the influence of the thermo-hydro-chemical (T-H-C) processes on buffer material degradation in the engineered barrier system (EBS) of HLW disposal repositories as related to smectite clay dehydration. Therefore, we adopted the chemical kinetic model of smectite dehydration to calculate the amount of water expelled from smectite clay minerals caused by the higher temperatures of waste decay heat. We determined that the temperature peak of about 91.3 °C occurred at the junction of the canister and buffer material in the sixth year. After approximately 20,000 years, the thermal caused by the release of the canister had dispersed and the temperature had reduced close to the geothermal background level. The modified porosity of bentonite due to the temperature evolution in the buffer zone between 0 and 0.01 m near the canister was 0.321 (1–2 years), 0.435 (3–10 years), and 0.321 (11–20,000 years). In the buffer zone of 0.01–0.35 m, the porosity was 0.321 (1–20,000 years). In the simulation results of near-field radionuclide transport, we determined that the concentration of radionuclides released from the buffer material for the porosity of 0.321 was higher than that for the unmodified porosity of 0.435. It occurs after 1, 1671, 63, and 172 years for the I-129, Ni-59, Sr-90, and Cs137 radionuclides, respectively. The porosity correction model proposed herein can afford a more conservative concentration and approach to the real release concentration of radionuclides, which can be used for the safety assessment of the repository. Smectite clay could cause volume shrinkage because of the interlayer water loss in smectite and cause bentonite buffer compression. Investigation of the expansion pressure of smectite and the confining stress of the surrounding host rock can further elucidate the compression and volume expansion of bentonite. Within 10,000 years, the proportion of smectite transformed to illite is less than 0.05%. The decay heat temperature in the buffer material should be lower than 100 °C, which is a very important EBS design condition for radioactive waste disposal. The results of this study may be used in advanced research on the evolution of bentonite degradation for both performance assessments and safety analyses of final HLW disposal.
Funder
Ministry of Science and Technology, Republic of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference68 articles.
1. Geological Disposal of Radioactive Waste: Safety Requirements,2006
2. Geological Problems in Radioactive Waste Isolation—Second Worldwide Review;Witherspoon,1996
3. Geological Challenges in Radioactive Waste Isolation—Third Worldwide Review;Witherspoon,2002
4. Geological Challenges in Radioactive Waste Isolation: Fourth Worldwide Review;Witherspoon,2006
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献