Abstract
The classification of ultrasound (US) findings of pressure injury is important to select the appropriate treatment and care based on the state of the deep tissue, but it depends on the operator’s skill in image interpretation. Therefore, US for pressure injury is a procedure that can only be performed by a limited number of highly trained medical professionals. This study aimed to develop an automatic US image classification system for pressure injury based on deep learning that can be used by non-specialists who do not have a high skill in image interpretation. A total 787 training data were collected at two hospitals in Japan. The US images of pressure injuries were assessed using the deep learning-based classification tool according to the following visual evidence: unclear layer structure, cobblestone-like pattern, cloud-like pattern, and anechoic pattern. Thereafter, accuracy was assessed using two parameters: detection performance, and the value of the intersection over union (IoU) and DICE score. A total of 73 images were analyzed as test data. Of all 73 images with an unclear layer structure, 7 showed a cobblestone-like pattern, 14 showed a cloud-like pattern, and 15 showed an anechoic area. All four US findings showed a detection performance of 71.4–100%, with a mean value of 0.38–0.80 for IoU and 0.51–0.89 for the DICE score. The results show that US findings and deep learning-based classification can be used to detect deep tissue pressure injuries.
Funder
Japan Society for the Promotion of Science
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献