Abstract
The analysis of the mechanism of fall avoidance motion is required to prevent fall-related injuries. To investigate the factors that affect fall avoidance motion, tripping was induced among 10 healthy male subjects during treadmill walking at gait speeds of 3.5 and 4.0 km/h. The posture of the subjects and ground reaction force of the recovery steps were recorded using a motion capture system and force plate to analyze the effect of gait speed on recovery motion. The gait parameters of the recovery steps were calculated and compared between gait speeds. Principal component analysis was performed to identify the parameters that represent the recovery motion and the magnitude of the first and second recovery steps, and the balance of recovery steps were extracted as defining characteristics. Of the 18 gait parameters, such as step time, five differed depending on gait speeds. However, the other gait parameters and all four principal components did not differ significantly with respect to gait speeds. Furthermore, the distribution of principal components and gait parameters across subjects and gait speeds suggested that the variability between trials was greater than the effect of gait speed and individual characteristics on recovery motion.
Funder
Japan Society for the Promotion of Science
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献