Synthesis and Application of the Magnetic Nanocomposite GO-Chm for the Extraction of Benzodiazepines from Surface Water Samples Prior to HPLC-PDA Analysis

Author:

Plastiras Orfeas-EvangelosORCID,Deliyanni EleniORCID,Samanidou VictoriaORCID

Abstract

Nowadays, the interest in preparing new, cheap and simple adsorbents that are used in sample preparation is on the rise. Graphene oxide (GO) nanomaterials and nanocomposites have become increasingly popular due to the novel methods of syntheses that have been published. Owing to their vast specific surface area and their π-delocalized electron system they possess, they are appropriate for the adsorption of a variety of aromatic organic compounds, being utilized either as adsorbents in analytical methods or as filter materials for the removal of pollutants in water. Pharmaceutical compounds, such as benzodiazepines, end up in surface waters caused by consumption or their disposal through sewage, thus becoming pollutants. In the present study, an analytical method has been developed and validated for the determination of two model-analytes of benzodiazepines by HPLC-DAD and their sample preparation protocol which consists of the Stir bar magnetic solid phase extraction (SB-MSPE) method, evaluating therefore the nanocomposite material as a decent adsorbent. The separation took place with the usage of an analytical column C18 RP-HPLC in 10 min. For the alprazolam (ALP) and the flunitrazepam (FLT), the LODs and LOQs were 3 ng/mL and 10 ng/mL, respectively, while the relative recoveries ranged between 93.6–112.9% and the RSDs were 1.11–9.50%. Finally, the material was examined for its reusability and was found that it can be used for over eight cycles of extraction/elution.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3