Experimental Study on the Ventilation Resistance Characteristics of Paddy Grain Layer Modelled with Response Surface Methodology

Author:

Wang Xiaoming,Han Chongyang,Wu Weibin,Xu JianORCID,Zeng Zhiheng,Tang Ting,Zheng Zefeng,Huang Tao

Abstract

The ventilation resistance of air flow through rice grain layers is one of the key parameters affecting drying uniformity as well as the energy consumption of the drying process. In order to reveal the variation of characteristics of the ventilation resistance with paddy grain moisture content, the air velocity and the bed layer depth are needed. A second order model was fitted to pressure drop using the response surface methodology and the results are compared with those of the Ergun model. The results showed that the pressure drop increases with the increase of paddy grain moisture content, air velocity and the bed layer depth, and the interactions between the air velocity and the bed layer depth have the most significant influence on the pressure drop. Moreover, a second-order polynomial pressure drop model based on RSM was established and compared with the Ergun model. The results showed that the pressure drop model established by RSM is similar to that of the Ergun model.

Funder

Key Realm R&D Program of Guangdong Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3