Author:
Yao Huanmei,Huang Yi,Wei Yiming,Zhong Weiping,Wen Ke
Abstract
Remote sensing for the monitoring of chlorophyll-a (Chl-a) is essential to compensate for the shortcomings of traditional water quality monitoring, strengthen red tide disaster monitoring and early warnings, and reduce marine environmental risks. In this study, a machine learning approach called the Gradient-Boosting Decision Tree (GBDT) was employed to develop an algorithm for estimating the Chl-a concentrations of the coastal waters of the Beibu Gulf in Guangxi, using Landsat 8 OLI image data as the image source in combination with field measurements of Chl-a concentrations. The GBDT model with B4, B3 + B4, B3, B1 − B4, B2 + B4, B1 + B4, and B2 − B4 as input features exhibited higher accuracy (MAE = 0.998 μg/L, MAPE = 19.413%, and RMSE = 1.626 μg/L) compared with different physics models, providing a new method for remote sensing inversion of water quality parameters. The GBDT model was used to study the spatial distribution and temporal variation of Chl-a concentrations in the coastal sea surface of the Beibu Gulf of Guangxi from 2013 to 2020. The results showed a spatial distribution with high concentrations in nearshore waters and low concentrations in offshore waters. The Chl-a concentration exhibited seasonal changes (concentration in summer > autumn > spring ≈ winter).
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献