Augmented Data and XGBoost Improvement for Sales Forecasting in the Large-Scale Retail Sector

Author:

Massaro AlessandroORCID,Panarese AntonioORCID,Giannone Daniele,Galiano AngeloORCID

Abstract

The organized large-scale retail sector has been gradually establishing itself around the world, and has increased activities exponentially in the pandemic period. This modern sales system uses Data Mining technologies processing precious information to increase profit. In this direction, the extreme gradient boosting (XGBoost) algorithm was applied in an industrial project as a supervised learning algorithm to predict product sales including promotion condition and a multiparametric analysis. The implemented XGBoost model was trained and tested by the use of the Augmented Data (AD) technique in the event that the available data are not sufficient to achieve the desired accuracy, as for many practical cases of artificial intelligence data processing, where a large dataset is not available. The prediction was applied to a grid of segmented customers by allowing personalized services according to their purchasing behavior. The AD technique conferred a good accuracy if compared with results adopting the initial dataset with few records. An improvement of the prediction error, such as the Root Mean Square Error (RMSE) and Mean Square Error (MSE), which decreases by about an order of magnitude, was achieved. The AD technique formulated for large-scale retail sector also represents a good way to calibrate the training model.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference61 articles.

1. Python Machine Learning;Raschka,2019

2. Data Science Essentials in Python Collect → Organize → Explore → Predict → Valuehttps://pragprog.com/titles/dzpyds/data-science-essentials-in-python/

3. Infrared Thermography and Image Processing applied on Weldings Quality Monitoring

4. Data Mining: Machine Learning and Statistical Techniques;Palmer,2011

5. Data Mining for Business Intelligence. Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner;Shmueli,2007

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3