Abstract
In recent years, with the occurrence of standards in the field, the realization of parquet floors in basketball halls acquires new values that take into account, among other factors, the response of the ball to touching the floor. That is why the paper aims to test four beech parquet floor structures in order to find optimal solutions for these sports activities. Each structure with an area of 1 m × 1 m includes beech parquet with friezes glued together with vinyl adhesive, fixed on a support of longitudinal spruce slats 20 mm thick in the case of structure A, fixed on a spruce frame in the case of structure B, fixed on a spruce frame and beech taggers in the case of structure C, and fixed on a spruce frame and rubber taggers in the case of structure D. The results of laboratory tests showed the clear advantages of type B structures, of type C structures with a large number of beech shock pads, and D-type structures with a small number of rubber shock pads. All tests were based on the antagonism of the elasticity and rigidity properties of the beech wood. Through methodology and experiment, the research contributes to the construction of beech parquet floors used in basketball halls, in terms of the ball’s response to touching the floor.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science