Systematic Analysis of Wind Resources for Eolic Potential in Bangladesh

Author:

Hussain Mariam,Park Seon KiORCID

Abstract

Energy consumption in Bangladesh increased for economic, industrial, and digitalization growth. Reductions in conventional sources such as natural gas (54%) and coal (5.6%) are calls to enhance renewable resources. This paper aims to investigate the atmospheric variables for potential wind zones and develop a statistical power-forecasting model. The study-site is Bangladesh, focusing on eight divisions across two regions. First, the southern zone includes Dhaka (Capital), Chittagong, Barishal, and Khulna. The northern regions are Rajshahi, Rangpur, Mymensingh, and Sylhet. This investigation illustrates wind (m/s) speeds at various heights (m) and analyzes the boundary layer height (BLH) from the European Center for Medium Range Weather Forecast reanalysis 5th generation (ERA5). The data is from a period of 40 years from 1979 to 2018, assessing with a climatic base of 20 years (1979 to 2000). The climatological analysis comprises trends, time series, anomalies, and linear correlations. The results for the wind speed (BLH) indicate that the weakest (lower) and strongest (higher) regions are Sylhet and Barishal, respectively. Based on power-curve relationships, a simple power predictive model (SPPM) is developed using global wind atlas (GWA) data (sample: 1100) to estimate the power density (W/m2) and found an accuracy of 0.918 and 0.892 for Exponential (EXP) and Polynomial (PN) with mean absolute percentage errors (MAPE) of 22.92 and 21.8%, respectively. For validation, SPPM also forecasts power incorporating historical observations for Chittagong and obtains correlations of 0.970 and 0.974 for EXP and PN with a MAPE of 10.26 and 7.69% individually. Furthermore, calculations for annual energy production reveal an average megawattage of 1748 and 1070 in the southern and northern regions, with an MAPE of 15.71 and 5.85% for EXP and PN models, except Sylhet. The SPPM’s predictability can be improved with observed wind speeds and turbine types. The research wishes to apply SPPM for estimating energy in operational power plants.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. Mapping the Top Export of Every Country https://www.visualcapitalist.com/giant-map-top-export-every-country/

2. Nearly Half of Germany’s Electricity Has Come from Wind and Solar This Year https://www.weforum.org/agenda/2020/08/where-solar-wind-power-are-thriving

3. Potentiality of Wind Power Generation along the Bangladesh Coast;Shaikh;AIP Conf. Proc.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3