Spinning of Endless Bioactive Silicate Glass Fibres for Fibre Reinforcement Applications

Author:

Eichhorn Julia,Elschner CindyORCID,Groß Martin,Reichenbächer Rudi,Martín Aarón X. HerreraORCID,Soares Ana Prates,Fischer Heilwig,Kulkova Julia,Moritz Niko,Hupa Leena,Stommel Markus,Scheffler ChristinaORCID,Kilo Martin

Abstract

Bioactive glasses have been used for many years in the human body as bone substitute. Since bioactive glasses are not readily available in the form of endless thin fibres with diameters below 20 µm, their use is limited to mainly non-load-bearing applications in the form of particles or granules. In this study, the spinnability of four bioactive silicate glasses was evaluated in terms of crystallisation behaviour, characteristic processing temperatures and viscosity determined by thermal analysis. The glass melts were drawn into fibres and their mechanical strength was measured by single fibre tensile tests before and after the surface treatment with different silanes. The degradation of the bioactive glasses was observed in simulated body fluid and pure water by recording the changes of the pH value and the ion concentration by inductively coupled plasma optical emission spectrometry; further, the glass degradation process was monitored by scanning electron microscopy. Additionally, first in vitro experiments using murine pre-osteoblast cell line MC3T3E1 were carried out in order to evaluate the interaction with the glass fibre surface. The results achieved in this work show up the potential of the manufacturing of endless bioactive glass fibres with appropriate mechanical strength to be applied as reinforcing fibres in new innovative medical implants.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. Supercooled Liquids and Glasses

2. Bioactive Glasses-Structure and Properties

3. Physical chemistry of glass surfaces

4. Insight into silicate-glass corrosion mechanisms

5. The behaviour of sodium silicate solutions (water glass) in the saline environment and their use in salt mining;Engelhardt;Ger. J. Geosci.,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3