Abstract
The generation management concept for non-interconnected island (NII) systems is traditionally based on simple, semi-empirical operating rules dating back to the era before the massive deployment of renewable energy sources (RES), which do not achieve maximum RES penetration, optimal dispatch of thermal units and satisfaction of system security criteria. Nowadays, more advanced unit commitment (UC) and economic-dispatch (ED) approaches based on optimization techniques are gradually introduced to safeguard system operation against severe disturbances, to prioritize RES participation and to optimize dispatch of the thermal generation fleet. The main objective of this paper is to comparatively assess the traditionally applied priority listing (PL) UC method and a more sophisticated mixed integer linear programming (MILP) UC optimization approach, dedicated to NII power systems. Additionally, to facilitate the comparison of the UC approaches and quantify their impact on systems security, a first attempt is made to relate the primary reserves capability of each unit to the maximum acceptable frequency deviation at steady state conditions after a severe disturbance and the droop characteristic of the unit’s speed governor. The fundamental differences between the two approaches are presented and discussed, while daily and annual simulations are performed and the results obtained are further analyzed.
Funder
Alexander S. Onassis Public Benefit Foundation
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献