Validation of Improved Sampling Concepts for Offshore Wind Turbine Fatigue Design

Author:

Hübler Clemens,Weijtjens Wout,Gebhardt Cristian,Rolfes RaimundORCID,Devriendt Christof

Abstract

Fatigue damage is a design-driving phenomenon for substructures of offshore wind turbines. However, fatigue design based on numerical simulations is quite uncertain. One main reason for this uncertainty is scattering offshore conditions combined with a limited number of simulations (samples). According to current standards, environmental conditions are sampled using a deterministic grid of the most important environmental conditions (e.g., wind speed and direction, significant wave height, and wave period). Recently, there has been some effort to reduce the inherent uncertainty of damage calculations due to limited data by applying other sampling concepts. Still, the investigation of this uncertainty and of methods to reduce it is a subject of ongoing research. In this work, two improved sampling concepts—previously proposed by the authors and reducing the uncertainty due to limited sampling—are validated. The use of strain measurement data enables a realistic estimate of the inherent uncertainty due to limited samples, as numerical effects, etc., are excluded. Furthermore, an extensive data set of three years of data of two turbines of the Belgian wind farm Northwind is available. It is demonstrated that two previously developed sampling methods are generally valid. For a broad range of model types (i.e., input dimensions as well as degrees of non-linearity), they outperform standard sampling concepts such as deterministic grid sampling or Monte Carlo sampling. Hence, they can reduce the uncertainty while keeping the sampling effort constant, or vice versa.

Funder

Seventh Framework Programme

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference32 articles.

1. Future Renewable Energy Costs: Offshore Wind;Valpy,2017

2. How 2 HAWC2, the User’s Manual;Larsen,2007

3. Wind Turbines—Part 3: Design Requirements for Offshore Wind Turbines,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3