A Capacity Configuration Control Strategy to Alleviate Power Fluctuation of Hybrid Energy Storage System Based on Improved Particle Swarm Optimization

Author:

Wu Tiezhou,Shi Xiao,Liao Li,Zhou Chuanjian,Zhou Hang,Su Yuehong

Abstract

In view of optimizing the configuration of each unit’s capacity for energy storage in the microgrid system, in order to ensure that the planned energy storage capacity can meet the reasonable operation of the microgrid’s control strategy, the power fluctuations during the grid-connected operation of the microgrid are considered in the planning and The economic benefit of hybrid energy storage is quantified. A multi-objective function aiming at minimizing the power fluctuation on the DC bus in the microgrid and optimizing the capacity ratio of each energy storage system in the hybrid energy storage system (HESS) is established. The improved particle swarm algorithm (PSO) is used to solve the objective function, and the solution is applied to the microgrid experimental platform. By comparing the power fluctuations of the battery and the supercapacitor in the HESS, the power distribution is directly reflected. Comparing with the traditional mixed energy storage control strategy, it shows that the optimized hybrid energy storage control strategy can save 4.3% of the cost compared with the traditional hybrid energy storage control strategy, and the performance of the power fluctuation of the renewable energy is also improved. It proves that the proposed capacity configuration of the HESS has certain theoretical significance and practical application value.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference22 articles.

1. Power balance control strategy of hybrid-bus Microgrid;Li;J. Cent. South Univ.,2016

2. Hybrid energy storage systems and control strategies for stand-alone renewable energy power systems

3. Control strategy of hybrid energy storage under islanding operation state;Hou;J. Electr. Mach. Control.,2017

4. Microgrid economic dispatch model considering battery life;Liu;Electr. Power Autom. Equip.,2015

5. Research on Optimal Configuration of Hybrid Energy Storage Capacity in Independent Wind Power Generation;Yang;Power Syst. Prot. Control,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3