Electric Load Data Compression and Classification Based on Deep Stacked Auto-Encoders

Author:

Huang Xiaoyao,Hu Tianbin,Ye ChengjinORCID,Xu Guanhua,Wang Xiaojian,Chen Liangjin

Abstract

With the development of advanced metering infrastructure (AMI), electrical data are collected frequently by smart meters. Consequently, the load data volume and length increase dramatically, which aggravates the data storage and transmission burdens in smart grids. On the other hand, for event detection or market-based demand response applications, load service entities (LSEs) want smart meter readings to be classified in specific and meaningful types. Considering these challenges, a stacked auto-encoder (SAE)-based load data mining approach is proposed. First, an innovative framework for smart meter data flow is established. On the user side, the SAEs are utilized to compress load data in a distributed way. Then, centralized classification is adopted at remote data center by softmax classifier. Through the layer-wise feature extracting of SAE, the sparse and lengthy raw data are expressed in compact forms and then classified based on features. A global fine-tuning strategy based on a well-defined labeled subset is embedded to improve the extracted features and the classification accuracy. Case studies in China and Ireland demonstrate that the proposed method is more capable to achieve the minimum of error and satisfactory compression ratios (CR) than benchmark compressors. It also significantly improves the classification accuracy on both appliance and house level datasets.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3