Measurement of Thermal and Electrical Parameters in Photovoltaic Systems for Predictive and Cross-Correlated Monitorization

Author:

Toledo Carlos,Serrano Lucía,Abad Jose,Lampitelli Antonio,Urbina Antonio

Abstract

Photovoltaic electricity generation is growing at an almost exponential rate worldwide, reaching 400 GWp of installed capacity in 2018. Different types of installations, ranging from small building integrated systems to large plants, require different maintenance strategies, including strategies for monitorization and data processing. In this article, we present three case studies at different scales (from hundreds of Wp to a 2.1 MWp plant), where automated parameter monitorization and data analysis has been carried out, aiming to detect failures and provide recommendations for optimum maintenance procedures. For larger systems, the data collected by the inverters provides the best source of information, and the cross-correlated analysis which uses these data is the best strategy to detect failures in module strings and failures in the inverters themselves (an average of 32.2% of inverters with failures was found after ten years of operation). In regards to determining which module is failing, the analysis of thermographic images is reliable and allows the detection of the failed module within the string (up to 1.5% for grave failures and 9.1% of medium failures for the solar plant after eleven years of activity). Photovoltaic (PV) systems at different scales require different methods for monitorization: Medium and large systems depend on inverter automated data acquisition, which can be complemented with thermographic images. Nevertheless, if the purpose of the monitorization is to obtain detailed information about the degradation processes of the solar cells, it becomes necessary to measure the environmental (irradiance and ambient temperature), thermal and electrical parameters (I-V characterization) of the modules and compare the experimental data with the modelling results. This is only achievable in small systems.

Funder

Ministerio de Ciencia, Tecnología e Innovación Productiva

Fundación Séneca

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3