Abstract
Pairs of unnatural nucleotides are used to expand the genetic code and create artificial DNA or RNA templates. In general, an approach is used to engineer orthogonal systems capable of reading codons comprising artificial nucleotides; however, DNA and RNA polymerases capable of recognizing unnatural nucleotides are required for amplification and transcription of templates. Under favorable conditions, in the presence of modified nucleotide triphosphates, DNA polymerases are able to synthesize unnatural DNA with high efficiency; however, the currently available RNA polymerases reveal high specificity to the natural nucleotides and may not easily recognize the unnatural nucleotides. Due to the absence of simple and rapid methods for testing the activity of mutant RNA polymerases, the development of RNA polymerase recognizing unnatural nucleotides is limited. To fill this gap, we developed a method for rapid analysis of mutant RNA polymerase activity on templates containing unnatural nucleotides. Herein, we optimized a coupled cell-free translation system and tested the ability of three unnatural nucleotides to be transcribed by different T7 RNA polymerase mutants, by demonstrating high sensitivity and simplicity of the developed method. This approach can be applied to various unnatural nucleotides and can be simultaneously scaled up to determine the activity of numerous polymerases on different templates. Due to the simplicity and small amounts of material required, the developed cell-free system provides a highly scalable and versatile tool to study RNA polymerase activity.
Funder
Russian Foundation for Basic Research
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献